The generator matrix

 1  0  0  1  1  1  1  1  1  X  6  1  1  1 X+3  1  1  1  3  1  6  1 X+6  1  1  1  X  1  1  1 2X  1  1 2X+3  1  1  3  1  1 X+3  1  1  6  1  1  1  1  1  6  1 X+3 2X+6 2X  1  1  1  0  1  1  1 X+3  1  1  1  1  1  3  1 2X  6  1  1  1  1 2X  1  1  1  1  1  1  1
 0  1  0  0  6 2X+4 2X+1 X+1  8  1  1 X+2 X+8  8  3 X+3 2X+4 2X+1  1 X+8  1 2X+8  1 X+7 X+6  3  1 2X X+1 X+2  1 2X+6  5 X+6 X+1  2  1 2X+6 2X+7  1 2X+8 2X  1 X+2  X X+3 X+1  4  1 X+7 2X  1 2X+6 2X+3 2X+1 X+2  1 2X+8 2X+5  1  3  7  3 2X+2 2X+4 X+6  1 2X+4  1  1 2X+5 2X+3  2 X+8  1  1  7 2X+6  2 2X+7 X+4  6
 0  0  1 2X+4  2  5 2X+1  0 X+1  1 2X+2  3 X+5  5  1  2 2X+2  6 2X+7  X X+6  7 X+8 2X+4 X+1 X+6 2X+8 X+8 2X 2X+8 2X 2X+7 2X+6  1  5  4 X+7  6 X+7 2X+4 2X+2  2 2X+3 2X+3 X+5  6 2X 2X+2  2  1  1 X+2  1 X+1 2X+4 X+7 X+7  2 2X+1 X+6  1 2X+8 2X+6 2X+8 2X+2  4 2X X+6  6 X+2 2X+6  6 2X+5 2X+4 2X  1  7 X+6 2X+7 X+3  3  6
 0  0  0  3  3  3  3  3  3  0  0  3  3  6  3  6  6  0  3  0  3  0  6  0  6  6  3  0  6  0  6  0  3  6  0  6  6  3  6  0  3  6  6  6  0  0  3  0  0  3  6  3  3  0  6  0  3  0  6  0  0  6  0  6  0  3  0  0  6  6  6  6  0  3  3  3  0  3  3  3  6  3

generates a code of length 82 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 155.

Homogenous weight enumerator: w(x)=1x^0+492x^155+830x^156+1950x^157+2730x^158+2956x^159+4218x^160+4860x^161+4188x^162+5526x^163+5586x^164+4026x^165+4830x^166+4476x^167+2836x^168+3042x^169+2562x^170+1646x^171+1200x^172+564x^173+236x^174+108x^175+78x^176+28x^177+12x^178+30x^179+12x^180+6x^181+8x^183+6x^184+6x^185

The gray image is a code over GF(3) with n=738, k=10 and d=465.
This code was found by Heurico 1.16 in 9.38 seconds.